Multi-Diffusion-Tensor Fitting via Spherical Deconvolution: A Unifying Framework

نویسندگان

  • Thomas Schultz
  • Carl-Fredrik Westin
  • Gordon L. Kindlmann
چکیده

In analyzing diffusion magnetic resonance imaging, multi-tensor models address the limitations of the single diffusion tensor in situations of partial voluming and fiber crossings. However, selection of a suitable number of fibers and numerical difficulties in model fitting have limited their practical use. This paper addresses both problems by making spherical deconvolution part of the fitting process: We demonstrate that with an appropriate kernel, the deconvolution provides a reliable approximative fit that is efficiently refined by a subsequent descent-type optimization. Moreover, deciding on the number of fibers based on the orientation distribution function produces favorable results when compared to the traditional F-Test. Our work demonstrates the benefits of unifying previously divergent lines of work in diffusion image analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter

Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...

متن کامل

Mesh-based spherical deconvolution: A flexible approach to reconstruction of non-negative fiber orientation distributions

Diffusion-weighted MRI has enabled the imaging of white matter architecture in vivo. Fiber orientations have classically been assumed to lie along the major eigenvector of the diffusion tensor, but this approach has well-characterized shortcomings in voxels containing multiple fiber populations. Recently proposed methods for recovery of fiber orientation via spherical deconvolution utilize a sp...

متن کامل

Fast and Accurate Multi-tissue Deconvolution Using SHORE and H-psd Tensors

We propose a new regularization for spherical deconvolution in diffusion MRI. It is based on observing that higher-order tensor representations of fiber ODFs should be H-psd, i.e., they should have a positive semidefinite (psd) matrix HT . We show that this constraint is stricter than the currently more widely used non-negativity, and that it can be enforced easily using quadratic cone programm...

متن کامل

Non-Negative Spherical Deconvolution (NNSD) for estimation of fiber Orientation Distribution Function in single-/multi-shell diffusion MRI

Spherical Deconvolution (SD) is commonly used for estimating fiber Orientation Distribution Functions (fODFs) from diffusion-weighted signals. Existing SD methods can be classified into two categories: 1) Continuous Representation based SD (CR-SD), where typically Spherical Harmonic (SH) representation is used for convenient analytical solutions, and 2) Discrete Representation based SD (DR-SD),...

متن کامل

Constrained spherical deconvolution on signal and ODF values

For the purpose of the ISBI HARDI reconstruction challenge 2013 and for the categories DTI and HARDI acquisitions, we reconstructed the diffusion datasets using two well established methods: a) Spherical Deconvolution Transform (SDT) [1], [2] and b) Constrained Spherical Deconvolution (CSD) [3]. The SDT is a sharpening operation which transforms the smooth diffusion ODF into a sharper fiber ODF...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 13 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2010